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Abstract-The physical and mathematical models on which the operating line method (OLM) (H. A. 
Irazoqui, Chem. Engng Sci. 41, 1243-1255 (1986) ; P. A. Aguirre, E. 0. Pavani and H. A. Irazoqui, Chenl. 
Engng Sci. 44,803-816 (1989)) for the optimal synthesis of heat-and-power systems is built, are discussed 
in depth. These models include the heat exchange ‘modes’ allowed and the general features of the type of 
solution sought in order to reach an optimal scheme for the total energy systems in chemical plants. A 
thorough development of the mathematical technique used to tackle the optimization problem is also 
made. This development comprises the derivation of the necessary and sufficient conditions for optimality. 

1. INTRODUCTION 

IN THREE previous papers [l-3] (from now on quoted 
as Papers I, II and III, respectively), the operating 
line method (OLM) was proposed for the optimal 
synthesis of the heat-and-power cogeneration systems 
(HAPCS) for chemical processes with dominant 
power load. 

The OLM is aimed at generating structures and 
operating conditions that bring the total steam utility 
consumption of the HAPCS, QV, to a minimum for 
each value of the total area of heat exchangers, AF.. 
Q” is the amount of heat drawn from the hot utility, 
which is necessary to cover the process heat-and- 
power demand. 

In Paper I, the physical model on which the method 
is based was presented. There, a brief outline of the 
mathematical formulation of the optimization prob- 
lem and of the solution technique adopted was also 
made. In a first step those heat-and-power integration 
problems were considered in which only one steam 
level is available. The concept of operating line (OL) 
was central to the mathematical model for the deri- 
vation of the necessary conditions for optimality and 
for the application of the synthesis method to different 
situations. An important result was the identification 
of an optimality region, in which the corresponding 
OL has to be included so as to insure optimality. 

In Paper II the OLM and the pinch design method 
[4] were compared on physical grounds, but special 
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attention was given to applications. The 
obtained showed that the hot utility usage predicted 
with the OLM was smaller than the one calculated 
with the Pinch design method for the same total power 
demand, when results were compared on the basis of 
the same value of AE [2]. 

In Paper III the thermodynamic meaning of the 
optimality region was uncovered. Moreover, the 
extension of the OLM for the optimal synthesis 
devised in Paper I, to the more general case of multiple 
steam levels was also made. An interesting feature of 
the optimal solution for multiple steam level problems 
is that integration gaps arise. 

Until now. the physical and mathematical model 
on which the OLM is based have not been presented 
together with a thorough discussion of the math- 
ematical technique used to tackle the optimization 
problem. In previous communications, applications 
were stressed over discussion of mathematical pro- 
cedures. This might handicap the full understanding of 
the method and the possibility of its extension to 
synthesis problems in which other kinds of transfer 
processes are present. 

In this work. the OLM will be presented. with spe- 
cial emphasis made on physical and mathematical 
aspects. The thermodynamic model on which the 
method is built will be analyzed first. Then, the math- 
ematical and physical models of the system including 
the ‘modes’ of exchange allowed and the general fea- 
tures of the type of solution sought will be discussed 
in depth. The variational technique adopted to solve 
the optimization problems will be reviewed. Necessary 
and sufficient conditions for optimality will also be 
analyzed. Finally, the mathematical features of the 
optimal solution and its physical interpretation will 
be discussed. 

In order to gain simplicity, only problems with a 
single steam level will be considered. The conclusions 
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NOMENCLATURE 

total area of heat exchangers [m’] 
ordinate at the origin of an OL [K] 
generalized function defined by equation 
(4) [dimensionless] 
objective function defined by equation 

(1) [kWl 
enthalpy flow [kW] 
functional defined by equation (34a) 
[kW K- ‘1 
lost work fkW] 
slope of the optimal OL [dimensionless] 
heat exchanged per unit time [kW] 
generalized function defined by 
equations (19) [kW] 
entropy Row [kW K- ‘1 
absolute temperature of a hot stream [K] 
ordinate of the intersection point 
between the optimal OL and the 
optimality region boundary for a given 
value of i. [K] 
absolute temperature of the cold utility 

WI 
derivative function of an OL 
[dimensionless] 
absolute tempe~dture of the hot utility 

[K] 
modified absolute temperature [K] 
modified absolute temperature 
corresponding to the intersection point 
between the optimal OL and the 
optimahty region boundary for a given 
value of i [K] 
absolute temperature of a cold stream 

WI 
abscissa of the intersection point between 
the optimal OL and the optimality 
region boundary for a given value of E. 

[Kl 
logarithm mean temperature between ti 
and ti+ I fK] 
overall transfer coefficient 
[kW K-’ m-‘1 
hot stream heat capacity flow rate 
[kW K- ‘1. 

Greek symbols 
2 positive value [dimensionless] 
.I I maximum energy recovery per unit area 

of heat exchangers [kW m-‘1 
E small positive quantity [dimensjonless] 
. 
5 arbitrary piece-wise constant function 

WI 
rl global efficiency of an HAPCS 

[dimensionless] 
a step function [dimensionless] 
0 rectangular function [dimensionless] 

constant value used in equation (2) and 
defined in Paper I [kW K-r] 
Lagrange multiplier [kW K- ’ m- *] 
Weierstrass function defined by equation 
(60) [kW K- ‘1 
rate of internal generation of entropy 
[kW K-l] 
combined function defined by equation 
(3) [kW K-- ‘1 
constant defined by integrating equation 
(26) fkW K-‘J 
power generated by PGCs that operate 
between hot utility and unmatched 
cold process streams [kWl 
power generated by PGCs that operate 
between unmatched hot process streams 
and cold utility [kW] 
generalized function defined by equation 
(19b) [kW K-‘1 
cold stream heat capacity Row rate 
[kW K- ‘1. 

Subscripts 
C properties associated with the CCS 
E contribution due to the thermal exchange 

between composite streams 
h properties associated with the WCS 
i stream or temperature interval related to 

cs 

j stream or temperature interval related to 
HS 

V contribution due to thermal exchange 
with the hot utility. 

Superscripts 
i temperature interval related to CS 

j temperature interval related to HS 
* heat capacity flow rate of a branched 

composite stream matched according 
to an OL against the other composite 
stream. 

Abbreviations 
CCS cold composite stream 
CS cold process streams 
HAPCS heat-and-power cogeneration 

system 
HCS hot composite stream 
HEN heat exchanger network 
HP high pressure 
HS hot process streams 
OL operating line 
OLM operating line method 
PGC power-generating cycle 
SA-PGC stand-alone power-generating 

cycle. 
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as well as the mathematical technique for solving the 
problem, can be easily extended to more general cases 
in which several steam levels are available. 

2. THE THERMOOYNAMIC MODEL. 
ASSUMPTIONS AND CONSTRAINTS 

In an HAPCS, hot process streams (HS) exchange 
heat with cold process streams (CS) in a subsystem 
comprising a heat exchange network (HEN). Each 
HEN corresponds to a particular pairing policy 
between HS and CS. 

Heat exchange between process streams is not 
always feasible. In addition, the amount of heat 
absorbed by CS is seldom in balance with the amount 
of heat delivered by HS. As a consequence of this. 
local heat sinks and sources remain after a particular 
matching policy between process streams has been 
implemented. Eficient power generation can be 
achieved by coupling power-generating cycles (PGCs) 
to these heat sinks and sources. 

In an HAPCS. process heat sources deliver heat to 
PGCs which, in turn, reject heat to the cooling water 
of temperature r,. Heat sinks, on the other hand, 
take heat from the heat discharge of PGCs which use 
the high pressure (HP) steam of temperature T,. as 
the heat source. When additional power is required. 
it must be generated by a ‘stand-alone’ PGC (SA- 
PGC) operating between the temperature of the HP 
steam and that of the cooling water. This is a typical 
situation in dominant power load cases. For more 
details the reader is referred to Papers I and II. A 
sketch of the thermodynamic system comprising the 
HAPCS and the SA-PGC is shown in Fig. I. 

The OLM considers heat integration with coupled 
power generation as a unique, non-separable prob- 
lem. From the beginning, heat integration between 
process streams is influenced by the fact that the 
remaining local heat sources and sinks will be, in 
principle. exploited to achieve efficient power gen- 
eration. In this respect it is important to remark that 
the maximum amount of power that can be generated 
by coupling PGCs to process heat sinks sources 

I COLD SINK 

To 

FIG. I. Sketch of the thermodynamic system comprising the FIG. 2. Elementary exchanges along degrees of freedom 
HAPCS and the SA-PGC. allowed in the thermodynamic model. 

depends on both the magnitude of the interaction and 
the temperature at which it occurs. 

The thermodynamic model on which the OLM is 
based can be formulated in terms of composite 
streams. The cold composite stream (CCS) is a single, 
effective cold stream the heat capacity flow rate (i.e. 
mass flow times the specific heat) of which is assumed 
to be piece-wise constant. For a given temperature. 
the heat capacity flow rate of the CCS is computed by 
adding up the heat capacity flow rate of the individual 
CS with the same temperature. The hot composite 
stream (HCS) is computed in an analogous way. 

The model is constrained so that, for a given stream 
pairing policy, heat exchange between the HCS and 
CCS, whenever it is feasible, is mandatory, maxi- 
mizing the amount of heat exchanged so as to com- 
pletely satisfy one of the composite streams. The HCS 
can also deliver excess heat to PGCs. The energy 
required by the CCS in excess over the amount of 
heat exchanged with the HCS will be provisionally 
considered as being supplied by direct heating using 
the auxiliary hot utility. 

Heat exchange between the HCS and PGCs, and 
between the CCS and the hot utility, are both con- 
sidered ‘supplementary modes’. They only become 
‘active’ (one mode at a time) to satisfy eventual heat- 
ing or cooling local needs remaining after local possi- 
bilities for heat exchange between integrated process 
streams have been exhausted. These constraints, char- 
acterizing the type of solution sought, have been sys- 
tematically incorporated in the formulation of the 
optimization problem, as will be outlined in Section 
4. Figure 2 shows a scheme of the thermodynamic 
model just described. 

HOT COMPOSITE STREAM 



This model allows a synthesis procedure to be 
devised so that a practical solution with convenient 
general features is obtained. Hence the solution 
sought is not the most efficient one in purely abstract 
thermodynamic terms. Moreover, it gives priority to 
the use of HP steam to generate shaft power by means 
of an SA-PGC over its use on PGCs discharging heat 
upon process sinks. This bias is introduced in the 
formulation by assigning the lowest possible value to 
the efficiency of PGCs operating in the latter kind 
of arrangement. This limiting situation in which the 
efficiency is zero, corresponds to the direct heating of 
CS by means of auxiliary steam. After the optimal 
solution is obtained, this restriction is removed by 
supplying heat to process sinks by means of the heat 
discharge of practical PGCs. This, by no means 
changes the optimum reached because. as it will be 
seen, the objective function value is not altered by this 
evolution. 

The rationale for this strategy stems from the type 
of solution sought in which heat exchange between 
process streams has priority over power generation 
by means of PGCs thermally coupled to process heat 
sinks/sources. This has to be so because, the maximum 
efficiency attainable with coupled power generation is 
always smaller than that of an SA-PGC. when both 
efficiencies are compared as the ratio of the shaft 
power produced in each case, over the same total 
amount of heat supplied by the auxiliary heat source. 
Therefore. without the constraint making heat ex- 
change mandatory, the most efficient solution will 
always be the one that forbids energy degrading heat 
integration of process streams. 

3. THE OBJECTIVE FUNCTION 

Heat recovery through stream thermal integration 
and through coupled power generation have com- 
peting trends. An appropriate objective function, G, 
able to evaluate the energy performance of an HAPCS 
subjected to the constraints described in the previous 
section, has already been derived in Paper I. 

The optimal synthesis problem can be formulated 
in terms of G. If TV is the absolute temperature of the 
HP stream level, which is assumed to have been fixed 
beforehand, and To is that of the cold utility, then the 
OLM is aimed at finding the HAPCS that maximizes 
the objective function 

2686 E. 0. PAVAN ef id. 

the maximum amount of work obtainable by coupling 
PGCs to local process heat sources. 

It is obvious that different pairs of values can be 
assigned to the two terms of equation (1). all yielding 
the same value of G. The model is constrained so that 
the optimal pairing policy that makes G maximum 
for a given value of the total exchange area, A,, also 
makes maximum the ratio (.&/T~+ Hence, heat re- 
covery through thermal integration has been given 
priority over power generation from process heat 
sources. Additional power needs must be satisfied by 
an SA-PGC as is the situation in dominant power 
load cases. However, every HAPCS synthesis problem 
can be considered, at least initially. as belonging to 
that class. This is so because the optimal solution 
obtained with the OLM for dominant power load 
cases can always be optimally evolved toward alter- 
native ones showing the same value of QE, smaller size 
of the total area of heat exchangers, AE. and smaller 
power output (see Paper I). 

For each given value of AE, the optimal solution 
will render the maximum value of the ratio 7 = G, AE, 
which measures the energy savings per unit of heat 
exchange area. This will always represent the best 
alternative when compared with other solutions on 
the basis of equal values of AE. 

An economic evaluation of optimal solutions, each 
one corresponding to a different value of AE, will 
single out the most profitable one. However, it must 
be stressed that different economic circumstances can 
only shift the interest from one optimal solution relat- 
ing to a given value of AE to another involving a 
different size of the exchange area, since the optimality 
criterion on which the solutions are built are per- 
manent goals, i.e. maximum energy recovery per unit 
area of heat exchangers, as measured by ;‘, for each 
AE value, At this point, the notion can be advanced 
that the trend of 7 is also the trend of the ratio of the 
economic benefit obtained with the HAPCS, related 
to G, to the capital costs, related to A,. 

In short, each optimal solution will show : 

(i) The ~ximum value of G for the corresponding 
value of AE. 

(ii) The maximum value of QE, provided that con- 
dition (i) has already been met. 

Therefore, generation of shaft power using the HCS 
as the heat source, although subsidiary to thermal 
energy recovery, is also a maximum. 

for each value of the total transfer area of heat 
exchangers, AE. 

The objective function G is made up of two terms. 
The first one ponders the two aspects of energy savings 
due to heat recovery : the amount of energy. QE, com- 
puted as energy savings in the auxiliary heat source, 
and its quality as measured by the Carnot etliciency 
((TV - T”)/T,). The second term in G, rns, represents 

As was already pointed out, the two terms in G have 
competing trends. Any quantity of heat exchanged 
between HS and CS diminishes the maximum amount 
of work obtainable through thermal coupling between 
PGCs and process streams. Therefore, there is a trade- 
off between heat integration and coupled power gen- 
eration. This precludes the possibility of finding the 
maximum for the objective function by sequentially 
looking for the maximum of one term at a time. 

_ In Paper I it has been shown that for the proposed 
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model, the rate of internal generation of entropy [5], 
cr, is related to G through 

G 
rJ=h’-- 

TO 
(2) 

where K is a constant whenever inlet and outlet tem- 
perature of process streams are given. Therefore, seek- 
ing a maximum for G is equivalent to seeking a mini- 
mum for 0, with the constraints discussed above. For 
convenience, the mathematical statement of the opti- 
mization problem will be made in terms of c rather 
than G. 

As can be concluded from (i), an optimal solution 
corresponds to a constrained maximum of G (or mini- 
mum of a) subjected to the condition AE = A,, with A0 
a constant value. As is well known, this is equivalent 
to the minimum of the combined objective function 

6* = a+i.A, (3) 

where j. is a Lagrange multiplier (see p. 210 of ref. 

Mh 

4. THE MATHEMATICAL MODEL 

In this section, the mathematical model for an 
HAPCS proposed in Paper I will be reviewed. This 
mathematical model is cast into a form apt for the 
application of variational calculus. This was done by 
expressing c*, defined by equation (3), as a functional 
of the matching policy of process streams. This func- 
tional should also contain information regarding each 
particular problem under consideration, as inlet and 
outlet temperatures of process streams and their heat 
capacity flow rates. The exchange modes that are 
allowed to be ‘active’ in the model and the priority 
given to heat exchange over the utility usage will also 
be introduced into the functional through an appro- 
priate formulation. 

4.1. The exchange region and the total heat capacity 
frow rate 

Part of the description of each particular problem 
is introduced in the formulation by the definition of 
the exchange region. 

For the heat exchange process the exchange region 
is made up of all points on a t vs T plane for which 
heat exchange from an HCS of absolute temperature 
T to a CCS of absolute temperature t, is feasible. The 
mathematical expression of the condition that a pair 
(t, T) must satisfy to belong to the exchange region, 
must be established. In order to do this, feed and 
target temperatures (i.e. stream outlet temperatures) 
of original HS are organized in a decreasing order and 
designated by q ; j = 1,2,. . . . Analogously, feed and 
target temperatures of original CS are organized in an 
increasing order and designated by Ti ; i = 1,2, . . . . 
For each of these values of ti (or 1;.), at least one 
original CS (or HS) enters or leaves the system. 

A function E(t, T) is defined as 

E(t, T) = @,(t, T)x c @:“(t)&“(T) (4) 
1 I 

in which 

@‘P(t) = e[w,(t-ti)-E]e[Wi(t,+, -t)--El (9 

@‘z/‘(T) =O[W,(T-q+,)-E]O[W,(~-T)--E] (6) 

and 

O,(t, T) = O(T- t). (7) 

In equations (5)-(7), O(x) is the step (Heaviside) 
function [7], w, and W, are the total heat capacity flow 

rates of the CCS and the HCS inside subinterval i and 
j, respectively, and E is a small positive quantity. For 
each point (t, T) inside the exchange region. it holds 
that 

E(t, T) = 1. (8) 

An immediate consequence of these definitions is 
that the total heat capacity flow rate of the CCS and 
the HCS are given by 

w(t) = 1 eyytjw, 
1 

(9) 

and 

W(T) = c @(i’(T)W, (10) 
j 

respectively. 
Finally, the (i,j)-exchange subregion is made up of 

all (t, r) pairs such that t, < t c t,, , and T,, , < T < q. 

4.2. The operating line. Maximum local exchange 
constraint 

Another key element for the construction of the 
functional cr* is the definition of the operating line. 
For the heat exchange process, an OL is a function 
T =f(t) which establishes a matching policy between 
the CCS of temperature t and the HCS of temperature 
T, provided that (t, r) belongs to the exchange region. 

When the CCS, whether exchanging heat with the 
HCS or not, increases its temperature by dr about t 
following a given OL T =f(t), it requires an amount 
of heat given by 

SQE = w(t) dt. (11) 

The amount of heat SQF can be supplied by the 
HCS of temperature T =f(t) and by the steam utility 
of temperature TV. The corresponding change in the 
temperature of the thermally integrated HCS for the 
given OL, is 

dT = IT,1 dt (12) 

where the expression in bars is the absolute value of 
T, = df/dt. Equation (12) holds both for co-current 
and counter-current pairing patterns and was written 
so that the amount of heat yielded by the HCS, 
expressed by 
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SQh = W(T) dT (13) 

is always a positive quantity. 
As was pointed out in Section 2, the model is con- 

strained so that when these changes in the temperature 
of the composite streams occur, the heat delivered by 
the HCS is first used to supply the CCS with the heat 
it demands up to the amount sQC. An eventual excess 
is then used to produce shaft power. The two situ- 
ations that may arise are depicted in Fig. 3. Conse- 
quently, whenever 

SQh -c SQc; E(t, T) = I (14) 

it must hold that 

SQE = SQh (15) 

where E(r, T) = I stands for the fact that heat ex- 
change between process streams is feasible. This 
situation is illustrated in Fig. 3(a). 

On the other hand, when 

SQ,, 2 SQc; E(t, T) = I (16) 

it is required that 

SQE = SQ,. (17) 

This is the situation illustrated in Fig. 3(b). 
In Paper I, all these constraints have been intro- 

duced at once by prescribing that the expression for 
the heat exchanged between the HCS and the CCS 
must be of the form 

SQ, = R(t. T, T,) dt (18) 

in which 

R(r, T. T,) = O,(t, T) c O’;‘(t) c 0(21’( T)U',,(T,) 
I 

(l9a) 
and 

@,,(7;) = f(c), - w,lT,l)O( tt’,l r,l 

--o,+E)+ II,;l7-,l]. (19b) 

The expression for @,,( T,) given by equation (19b) 
takes into account the possibility of either counter- 
current heat exchange (in which T, > 0) or co-current 
heat exchange (in which T, <: 0). The generalized 
function (D,,(T,) has been constructed in a way such 
that 6QEr as given by equation (l8), reduces to either 
equation (I 5) under the conditions given by equation 
(14) or to equation (17) under the conditions 
described by equation (16). 

With these definitions, the expression for the cor- 
responding amount ofheat to be supplied by the steam 
utility, 6Q,. for a given OL T =f(r). becomes 

6Q, = [I - R(r, T, T,,] dr. (20) 

As in Paper I. the rate of internal generation of 
entropy can be expressed as a functional CJ [A of the 
OL, incorporating the constraints discussed above. 
The same can be said as regards the total exchange 
area, which can be expressed as a functional ArV]. 
As a consequence, u* is also a functional of the OL. 

The rate of internal generation of entropy cor- 
responding to either case of Fig. 3 is given by the 
expression 

provided that SQE and SQ\ are given by equations (18) 

COLD COMPOSITE STREAM +Wi 

h HOT COMPOSITE STREAM 
Y 

+-Wj 

-a- 

6 iOLD COMPOTITE STREAM 7 --C Wi 

)j HOT COMPOSITE STREAM v - wj 

-b- 
FIG. 3. Heat exchange between integrated process streams: sketch showing the possibilities compatible 

with the constraints imposed. 
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and (20), respectively. With the same assumptions, the 
corresponding heat exchange area involved is 

(22) 

where U is an overall transfer coefficient. The 
contribution to the value of u* of the elementary 
exchange can be expressed as 

ha* = Sa+i.GA,. (23) 

Combining equations (18) and (20)-(23) the fol- 
lowing expression for 6a* is found : 

da* = da,*+ R(t, T, T,) 

A . 1 

+cr (T-t) 
___ dt (24) 1 

where 

au,* = w(t) f-f dt 
[ 1 

(25) 
Y 

which, in fact, amounts to 

da; = ss, - f6H, 
” 

(25) 

where the elementary entropy change of the CCS is 

(27) 

and 6H, is the elementary change of enthalpy in the 
same composite stream given by 

6H, = w(t) dt. (28) 

The expression of o* as a functional of the OL 
T =f(t), can be obtained by integrating equation (24) 
along the interval 0 < t < co. The expression thus 
obtained is 

i I 

+ E (T-t) 
- dt (29) 

1 

where a*Lf; 11 stands for a functional the value of 
which depends on the particular choice made on the 
OL, T = f(t), and on the value of i.. Besides, at is a 
constant under the assumption that the inlet and out- 
let temperatures of every CS are given. It is important 
to remark that, although the integration performed 
on equation (24) is formally carried out over the entire 
interval 0 < t < co, the integrand is zero outside the 
exchange region (i.e. for E(t, T) = 0). 

A point has been reached in which the mathematical 
formulation of the problem is ripe for the application 
of variational calculus to seek for the optimal OL. 

5. DISCUSSION OF THE MODEL 

The model has been formulated in terms of com- 
posite streams. the total heat capacity flow rates 
of which are piece-wise constant functions of the 
temperature. as given by equations (9) and (IO). Dis- 
continuities in the total heat capacity flow rates occur 
at temperature values corresponding to those of 
streams entering or leaving the HEN. 

It is usual to represent the cooling profile of an HCS 
and the heating profile of a CCS on an H vs T plane. 
These T-H diagrams, widely used in stream thermal 
integration problems [8]. have piece-wise constant 
slopes given by 

dT 1 
dH=W,; r,,, < T< 7; (304 

for the cooling profile of the HCS, and 

dt 1 
dH=&; t,<t<ti+I (30b) 

for the heating profile of the CCS. respectively. 
The overlap between the H-axis projection of the 

HCS cooling profile and that of the CCS heating 
profile on a T-H diagram, is a measure of the amount 
of heat that can be exchanged between process 
streams. A vertical line intersecting both profiles simul- 
taneously, determines a pair (t, T) for which heat 
exchange between composite streams is feasible. The 
set of all (t, T) pairs satisfying this condition gives rise 
to a function T =f(t) for each degree of overlapping 
between the H-axis projection of the cooling and heat- 
ing profiles. The single valued function T =f(t) is the 
operating line, which represents a particular pairing 
policy between process streams. 

From these considerations it can be concluded that 
in this model the OL is a function with piece-wise 
constant slope on a t vs T plane. 

Assuming that T =f(t) is an OL (not necessarily 
optimal) with the general features just described, a 
modified temperature i given by 

&T-Y (314 

for the HCS, and by 

(3lb) 

for the CCS can be defined, where 

AT= T-t =f(t)-t. (3lc) 

This change of variables from (H, T) into (H, T), 
amounts to a downward shift of the HCS cooling 
profile by a variable quantity AT/2 = (J(t) - t)/2, and 
to an upward shift of the CCS heating profile by the 
same amount. Accordingly, a contact point between 
the two profiles in a T-H diagram means that their 
temperatures locally differ by AT and that heat 
exchange is still possible. 
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Both profiles in a T-H diagram show breaking 
points (Fig. 4(a)), corresponding to sudden changes 
in their total heat capacity flow rates due to streams 
entering or leaving the HEN. 

The T-H diagram can be horizontally partitioned 
at those breaking points, giving rise to a series of 
temperature intervals along the vertical temperature 
scale. The total heat capacity flow rates of the HCS 
and the CCS are constant inside each of these Tinter- 
vals. At the boundaries of each interval, at least one 
of the original streams enters or leaves the HEN. 

The same partitioned T-H diagram could have been 
obtained from a larger set of pseudostreams. This new 
set is made up of all pseudostreams generated by 
breaking up the original streams at every T interval 
boundary they encounter between their feed and tar- 
get temperatures, thus generating an equivalent, larger 
set of streams. By construction, every pseudostream 
in the new set, whether hot or cold, covers the stretch 
of a single temperature interval. This allows each tem- 
perature interval in the F-H diagram to be considered 
as separate from the rest. 

Any of the two profiles inside a temperature interval 
can be horizontally shifted until a point of contact is 
established with the other profile in the same interval. 
The situation reached is that of maximum exchange 
between the HCS and the CCS in the interval for the 
given OL which, in turn, gives AT as a function of t 
through equation (31~). When this operation is 
repeated for every temperature interval, a situation 
like the one shown in Fig. 4(b) is reached. The over- 
shoot of the CCS in a given interval, if it occurs, 
represents the minimum demand of external heating 
in the interval, whereas an eventual overshoot of the 
HCS represents the interval needs for external cooling. 

The remaining question is whether the HCS and 
the CCS profiles in the interval are in a situation of 
exchanging heat obeying the given OL or not. If they 

do SO, the temperature difference between them in the 
interval should satisfy equation (TIC), which in terms 
of rcan be written as 

Af=O. (32) 

In general, this condition is not satisfied at the 
interior of each temperature interval as illustrated in 
Fig. 4(b). 

The condition given by equation (32) can be met 
by branching the composite stream corresponding to 
the overshooting profile so that the condition 

w(7) = lV(T)T,(T) (33) 

holds for integrated streams in the interior of every 
temperature interval. The unmatched branch of the 
overshooting composite stream in each interval 
behaves as a process heat source or sink, depending 
on whether the branched composite stream is hot or 
cold, respectively (Fig. 4(d)). 

The new construction, schematically shown in Fig. 
4(c), guarantees that equation (32) is satisfied at every 
exchange situation. It is not until the above operations 
are performed that the particular OL chosen truly 
represents a stream pairing policy. 

It is important to remark that the constraint of 
maximum local heat exchange, mandatory within the 
present model for any adopted OL, has been observed 
throughout the above operations. The results arrived 
at are summarized in Fig. 5 for a given, non-optimal, 
OL. 

6. OPTIMIZATION PROCEDURE 

6. I. Derivation of necessay conditions 
For a given synthesis problem, it is assumed that 

the optimal OL is known and that the original streams 
have been broken up giving rise to an equivalent, 
though larger set of pseudostreams. Thus, a diagram 

__-__--_~~~----- 
J 

-a- l -b- I -c- I -d- I 

FIG. 4. Heating and cooling profiles in a T---H diagram: (a) HCS and CCS profiles; (b) profiles at the 
relative position of maximum exchange between the pseudostreams for a given OL ; (c) profiles for the 
integrated pseudostreams undergoing heat exchange along a given OL: (d) profile of umatched branch of 

the overshooting pseudostream split in each t interval. 
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like the one shown in Fig. 5 can be constructed, which 
is the starting point for the mathematical development 
leading to the solution of the optimization problem. 

The optimal OL is the one that makes the functional 
CT* of equation (29) attain its minimum for the chosen 
value of i.. 

Since a: in equation (29) is a constant for each 
given problem, it is sufftcient to consider the func- 

tional 

where 

J= F(t, T. ‘J’,) dr (344 

Wb) 

instead of the expression given by equation (29). with- 
out loss of generality. 

In order to identify the optimal (minimal) OL, a 
va~ationa~ technique will be used. For the purpose of 
deriving necessary conditions, the variations con- 
sidered may be specialized as much as convenient (see 
p. I.5 of ref. [6]). 

The portion of optimal OL iying inside a generic 
(i, j) exchange subregion on a t vs T diagram is 
considered, like the one shown in Fig. 6. A variation 
a<(t), where z is a positive value, is chosen which 
satisfies the following conditions : 

(i) It belongs to the same class of functions as the 
optimal OL does, i.e. its slope is piece-wise constant. 

FIG. 5. Original streams and pseudostreams defined for a 
given OL. Dotted lines represent the temperature values 
(denoted by I;* and tt) at which the original streams have 
been cut to generate the set of pseudostreams. These values 
correspond to the OL breaking points B, C, D and E. Heat 
capacity flow rates with asterisks represent effective heat 
capacity flow tates of the composite stream matched accord- 

ing to the OL against the other one. 

(ii) At opposite corners of the generic (i, 1-l sub- 
region it must hold that 

f(&) = i(fi, ,) = 0. (35) 

Moreover, i(t) = 0 outside the (i,j) subregion which, 
in turn, is any subregion among all the exchange 
subregions. 

A variation of this class is shown in Fig. 6. The total 
variation of the integral J is 

(36) 

which can also be written as 

i 

,*- 0 
AJ= fF(t, Ttr;, 7.,+r;‘)-F(t, T, T,)] dr 

1; 

+ 
s 

‘,+ I 
[F(r, T+& T,i-a<‘)-F(t, T, T,)] dr. (37) 

,010 

Assuming that x is a constant the absolute value of 
which is taken so small that Taylor’s formula can be 
applied to the integrands in equation (37), then P-0 
AJ-6J=r iJ (FTC + F,,C’l dt 

‘2 ‘*+ I + J I*+ 0 (FTC+ Fr,i’) dz i (38) 
where SJstands for the first variation of J, Fr = Z&‘CT 
and FT, = c?Fj?T,. 

Integrating by parts the second term in each inte- 
grand of equation (38), it becomes 

T 

t 
FIG. 6. Special variation conveniently chosen in the (& jj 
subregion for the derivation of necessary conditions and 
z = 1. At the subregion opposite comets it holds that 

i(lJ = i(r, + 1) = 0. 
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T(f) = 
I 

1. (45) 
I- A 

+ [iF,J ::;i 0 + ~;;;+-&,)drj. (39) 
J(‘) r/ 

Comparing equation (41) with equation (45), it can 

Since < vanishes at t, and at t,+ ,, this leads to the be conc’uded that 
condition that for an extfemum it is necessary that 

F,-&-0 
n,, = 0 (46a) 

(hoa) and 

in the interior of the generic (i.1’) subregion. together 
with 

i(t*-O)F,,(t*-0) = i(r*+O)F,,(f*+O) (40b) 

I 
T, = = P (46b) 

for ti < f* < t,+ ,. 
Since the optimal OL. provided that it exists, has a 

constant slope inside each subregion. and taking into 
account that i(r*-0) = <(r*+O) due to the type of 
variation chosen, then equation (40b) is satisfied for 
the admissible class of solutions. 

Inside the interval (t,, l,,,), and for an OL with 
piece-wise constant slope given by 

T(t) = a,, + P,,t ; T > t (41) 

where ai, and Pij are constant values, equation (40a) 
becomes 

regardless of the subregion considered. since j./U is a 
constant. 

From equation (45) it follows that the range of P(i) 
is 

I<$<P<oc 
I 

which is a consequence of T and r being ab- 
solute temperatures. These results are valid for all (i,~) 
subregions. 

I i I 
-F w,O(IZ’,IP,,(-w*+&) 1 6.2. lnterpretatiotl of‘twcessaty conditions 

F- U (T-r)- There are two contributions to Q, namely, the one 
associated to heat exchange between integrated pro- 

i I 
- - v W, sign (P,)[I -O(W,lP,,I 

cess streams, or. and the one associated to the direct 

U (T-r)- heating of the excess cold streams by, means of the 
steam utility. u,. For OLs which satisfy equation (45). 

-0; +a)] = 0 (42) these contributions in the (i,j) subregion are given by 

as shown in the Appendix. 
When the inequality be = O,(P) (y) In (5) (48a) 

w,lP,,l < wi (434 

holds, then 
and 

o(W,IPi,(-o,+E) = 0 

and equation (42) reduces to 

(43b) 0, =[q-@,,tPJ](l-$)In(y) (48b) 

1. I 
yqy-qicc;=o 

respectively, where tLal = (fi+ I- tJ/ln (r,_ 1 ‘t,). 
(43c) The area of heat exchangers for the same subregion 

is 

which for E. # 0 cannot be satisfied by any straight 
OL. 

On the other hand, for 
A = 1 @ijtp) ti+ I 

E u(P-*p t, . ( > 
(49) 

ct;lpijl > Oi @a) It is important to remark that an OL given by 

equation (42) becomes equation (45) satisfies the necessary conditions for a 
local minimum only when W,P 3 wi. 

[ 

I i 1 A situation in which W,P c wi can be thought of 
-- 
T2 

-7 &)=O 1 L’(T-t) ’ 
(ab) as having been reached by continuously increasing w,, 

starting from an initial value which is smaller than the 
which corresponds to an optimal OL given by product W,P. For a fixed value of the slope of the 
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optimal OL, P = Pt. this initial point can be any point 
A’ in the segment AB of Fig. 7. 

As long as W,P, B wi, the chosen OL satisfies the 
necessary conditions for a local minimum. In addition 

and 

a, = 0 (job) 

Along A’B, the ratio (b/AE) maintains its optimum 
value corresponding to P = PI 

irrespective of the value of oi. This situation lasts 
until the condition oi = o,* = W,P, is reached. This 
happens at point B of Fig. 7. 

From beyond point B, both aE and AE remain con- 
stant, maintaining each one the largest value attained, 
given by 

and 

(52a) 

PI (SZb) 

respectively, as can be concluded from equations (48a) 
and (49). 

On the other hand, the contribution a, is equal to 
zero along A’B, but increases linearly with wj beyond 
point B, according to 

FIG. 7. Curve I (dotted tines) : (cF/&).~ vs w,/Fq = P, as 
given by equation (51). Curve II : trajectory with constant 
&, representing all (a/A,) values obtained by increasing W, 
starting from point A’, which represents an initial optimal 

solution for P = P,. The product W,/P, is kept constant. 

until the actual value of oi is reached at point C of 
Fig. 7. The trend of a/A, as a function of w,/W,. with 
P and W, kept constant, is shown as the trajectory 
A’BC. 

Curve I of Fig. 7, containing the breaking points 
of all possible trajectories, is the representation of 
(~J/A&,~ as a function of P, given by equation (51) 
forl<o,/W,=P<co. 

Considering 

which is valid for wij Wj > Pt, with 0 < (1 - tLM/ 
TV) < 1, and 

(‘@l&)opt _ U(P,-1) P,+l 
%4 w,t pi [ 1 p, (54) 

cur: = H;P,) 

with 1 < [(P, +1)/P,] -C 2, it can be concluded that 

for (o,/ W,) > P, and o: = P, W;.. From equation (S), 
the conclusion can be drawn that the se_ment BC of 
Fig. 7 is always below Curve I. 

Whenever the inequality oi > P, Ci;, holds. another 
OL with slope P = P2, P2 > P,, such that (13, = W,P2 

may be considered. This new situation corresponds to 
an optimal solution represented by point B’ of Fig. 7. 

According to the discussion above, the following 
inequalities hold : 

Therefore, as is shown in Fig. 7, when process 
streams are matched according to an OL T = P,t, with 
wi > P, Wj and observing the constraints imposed on 
the model, the value of (a/A,) obtained (point C) is 
bounded ‘from below’ by the optimal value cor- 
responding to PI (point B), and it is bounded ‘from 
above’ by the optimal value corresponding to Pz, 

q = Pz W, (point B’). 
These results will be used to show that thermal 

integration along the OL given by T = P, r still yields 
the lowest value for the ratio cl.& for c), > P, W,, 

when compared on an equal exchange area basis with 
the solution obtained with other OLs. 

This can be proven by contradiction. As an initial 
step, for w,/ W, > P, and oi = W,P, it is assumed that 
there is an OL r =f*(f) different from the one given 
by equation (45), such that for the same \aIue of A, 
required by the solutions represented by B and C, 
yields a value of (a/AE)* for which the following 
inequalities hold : 
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i.e. the solution obtained with T=f*(r) is assumed 
to be better than the one obtained with T = P, r, rep- 
resented by C in Fig. 7. For any value of 0,;’ W, > P,, 
the sequence of terms in the inequalities of equation 
(57) must remain the same as long as functions 
T = P, f and T =f*(r) are not altered. 

Because T =f*(r) is not the minimal OL, when B’ 
approaches B by making w,/B’, tend to P, keeping 
both T = P, t and T = f*(t) unchanged, also C necess- 
arily approaches B. If the function T =f*(t) existed 
and since a/A, attains its minimum value (a/A,),,,,, 
for T = P, t, then in this operation a limiting situation 
should be reached in which 

But, as was already pointed out, the sequence of 
these terms should have remained equal to that of 
equation (57), since it does not depend on the amount 
by which w, exceeds the product W,iP,. but solely 
on the functional forms of r= P,r and ir=f*(f). 
Therefore, if a sequence of terms like the one given by 
equation (58) holds in the limit wi -+ LV,P,, it must 
hold for any w, > W,P,. Since f*(t) is arbitrary, then 
the condition 

(59) 

guarantees that for wi > WiP, the least value of 
(a/A,) is obtained for the corresponding value of AE 
by stream integration according to the OL T = P, t. 

As an illustration, solutions represented by points 
C and B’ of Fig. 7 were obtained for the test problem 
given in Table I. Table 2 shows their energy per- 
formance for P, = 1.02 and P2 = 1.04, respectively. 
They are also compared with a ‘perturbed’ solution, 
C’, obtained from the one represented by point C of 
Fig. 7, by avoiding stream integration along T = P, f 

in those (i,j) subregions for which ~l)~ > P, Wj. In all 
cases AQV is the extra amount of heat to be supplied 
to an SA-PGC which supplements the power output 
of the HAPCS in cases C and B’ in order to reach the 
total power generated in case C’. 

Table 1. Data for example problem 

Process stream SuPPtY Target Heat capacity 
number and temperature temperature flow rate 

type (K) (K) (MW K- ‘) 

1 (cold) 313 453 0.40 
2 (hot) 573 353 0.50 
3 (cold) 413 553 0.52 
4 (hot) 473 313 0.45 

L; = 7.5 kW m-* K-‘. Utilities: steam at TV = 6.50 K, 
cooling water at T, = 288 K. 

6.3. Derivation of rhe sujicienf codition 

So far, the necessary conditions for the existence of 
a minimal OL (or equivalently, of a weak minimum 
of the functional a*) have been derived. However. the 
sufficient condition for a minimum must be analyzed 
so as to insure that the solution found corresponds to 
a strong minimum of e*. In that sense, it can be 
proven that Weierstrass’ condition [U], which guaran- 
tees sufficiency, is satisfied in this case. This condition 
establishes that, in order for the function T(r) to 
achieve a strong minimum of the functional given by 
equation (34a), it is sufficient that for any r, the 
inequality 

{(r, T. T,. P) = F(r, T,T,)-F(t, T,P) 

. 

holds. 

-(T,-P&t, T, P) > 0 (60) 

Substituting equations (45) and (46b) into equation 
(60) gives 

<(t, T, T,, P) = 
* 1 

$ - i + - __ 
” T U (T-I) 1 

xc c @“(r)O:“(T)(w,- lv,T,) 
( I 

x {O( W,T,-UI~+E)-~( Wjf --w,+E);. (61) 

Since only single-value functions are acceptable as 
OLs, then it must hold that TV > 0 for all values of 1. 

From equation (61) it can be seen that, whether 
T, > w, ‘IT or 0 < T, < w,/ W,, t has the opposite sign 
to that of the expression inside the square brackets. 
Hence : will be either positive or zero in the region 
on the r vs T plane for which 

1 -1 

T,- 
‘+!_ 
T U (T-f) 

< 0. (62a) 

Therefore, optimal OLs are straight lines through 
the origin with slope given by equation (46b), lying 
inside the region 

(y)(T) > ;. (6’b) 

This region will be referred to as the optimality 
region. 

7. DISCUSSION OF THE SOLUTION 

The optimal OLs form a set ofstraight line segments 
with common intersection at the origin on a f vs T 

plane. Each one corresponds to a different value of i 
and lies inside the optimality region given by equation 
(62b). The slope P of an OL in the optimal set is given 
by the corresponding i. value through the expression 
of equation (46b). As these results do not depend upon 
a particular set of streams, they can be presented in a 
problem independent chart (see Fig. 4 of Paper I). 

Among all (i,n subregions, only those encountered 
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Table 2. Energy performance of different solutions for the problem of Table I 

Comparison of solutions (refer t: Fig. 7) (refer tt Fig. 7) (perturbed’ solution) 

P I .02 1.04 
ue (kW K- ‘) 5.84 II.45 
CT, (kW K-‘) 0.39 0.29 

AE (m’) 1986.06 992.49 
(a/A,) x f03 (kW K-’ m-*) 3.14 II.83 

QE (MW) 127.91 127.74 
THS WV 14.94 13.45 
rcs WW 0.25 0.19 
C WV 86.17 84.59 
Q> (MW I.14 1.25 

AQ, (MW 32.45 35.25 
? = (5~s + rcsiQ. + AQ,) 0.99 0.91 

by the optimal OL wilt play a part in the optimal 
solution. However, in order to implement heat inte- 
gration along the optimal OL, the heat capacity flow 
rate of the thermally matched branches of the CCS 
and the HCS must satisfy 

inside each participating (i, ~1 subregion. This con- 
dition can always be satisfied by splitting the stream 
with heat capacity flow rate in excess, giving rise to a 
local heat source or sink, depending on whether the 
split stream is hot or cold. 

Figure 8 shows the optimal OL and its cor- 
responding optimahty region for a given ;C/U vaiue. 
Inside a participating (i,~‘ subregion, process streams 
are matched in counter-current flow pattern as it is 
required by equation (45). 

As can be seen, the temperature difference between 
matched process streams is proportional to the absol- 
ute temperatures of both pa~icipating streams, as 
given by 

_-----_-____-- 

T 

-f 
TV 

FIG. 8. Generic (i, J) heat exchange subregion, optimality 
region boundary and ootimal OL for L/U = 0.050. 

FIG. 9. Optimality surface in which the exchange region has 
to be included so as to insure optimality conditions. 

1.02 
4.08 

20.13 
1387.43 

17.45 
82.38 
20.18 
13.09 
66.05 
59.51 
- 
0.56 

Or 

AT(t) = [Pfj.) - I]t Waf 

AT(T) = ~ 
[ 1 P(E.)-1 T 

P(i) (Mb) 

which are two equivalent ways of expressing AT as a 
function of the temperature level. 

The i. parameter plays an important role in the 
choice of the kind of solution wanted. In fact. a solu- 
tion for which &/lJ is very small will be eligible only 
when energy savings have an economic value that 
overwhelms additional capital costs. Under such cir- 
cumstances, larger areas of heat exchangers can be 
afforded and heat exchange can be conducted ctoser 
to the equiIibrium OL T = 1, t < r,. On the other 
hand, optimai solutions with large values of ;.]U are 
the only eligibie solutions when capital costs, related 
to Ae, dominate over energy (operating) costs. In 
the limit for i/V-* I, the optimality region satisfying 
equation (62b) collapses into the single point (f = 0, 
t = 0, E./U = I) and optimal thermal integration is not 
possible. 

Figure 9 is a representation of the mathematical 
surface obtained in the I vs r vs i.jV (or equivalently 
t/TV vs T/TV vs ((~*-~)~U~~) space when equation 
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(62b) is considered an equality. This figure illustrates 
the limiting situations already discussed. 

Though i.jU can have any value between 0 and I, 
it should be noted that in each particular problem the 
range of interest is restricted to those values cor- 
responding to OLs that intersect the region on the t 
vs Tplane that is common to the exchange region and 
the optimality region. 

The physical meaning of the optimality region was 
elucidated in Paper III: inside the optimality region 
corresponding to a particular value of i. further inte- 
gration between the HCS and the CCS, starting from 
any initial degree of completion, yields an increase of 
G per unitary increase of AE greater than ;.r,,. In any 
case, choosing a value of i. amounts to choosing a 
threshold value for the total power recovered G per 
unit of the total area of heat exchangers. As a conse- 
quence. 7 = G/AE > iT, for the entire system, pro- 
vided that the OL is completely included in the opti- 
mality region corresponding to i.. 

In Paper III it was also shown that the lost work 
corresponding to an elementary heat exchange pro- 
cess between composite streams along an optimal OL. 
6L We, per unit heat exchange area. is given by 

SLW, i 
-= 
6AE . 

I- 4 J( > 
(65) 

c 

This expression suggests the physical meaning of the 
optimal OL : it represents a matching policy between 
the HCS and the CCS leading to an HEN in which the 
loss of work due to heat exchange between integrated 
streams (or equivalently, the corresponding CT~ value) 
per unit AE and unit time is a constant throughout 
the entire HEN, regardless of the temperature level at 
which the heat exchange occurs, and solely depends 
upon the chosen i value. 

As is shown in the calculus of variations, the mul- 
tiplier i gives the rate of change of the extreme value 
of the functional u (or G) with respect to the exchange 
area A, [lo], given by 

or 

du 
-= -..j. 
dA, 

(664 

ZG 
- = i.T, 
dA, 

(66b) 

respectively. 
Alternatively, it may be said that i. measures the 

sensitivity of u (or G) to changes in the constraint 
value A, representing the total area of heat exchan- 
gers. Then, according to equations (66) the multiplier 
i. gives a measure of how much the maximum profit 
(measured by G) or the minimum cost (measured 
indirectly by a) will be changed if the exchange area 
changes by one unit. Hence i. can be interpreted in 
this case as a shadow value of shadow price per unit 
of AE [IO]. 

It is easier to carry out calculations in terms of the 
slope P rather than in terms of i. This is possible due 
to the relationship between P and i. given by equations 
(46b). 

Different P values will give different pairs of values 
of AE and G. but each pair will correspond to the 
maximum ratio of 7 = G,‘A, compared with other 
solutions with the same exchange area. 

An initial choice of P can be made so as to obtain 
a given average ATvalue for the integrated system (i.e. 
ATa,er+.e = IO’C). fixed on technical grounds. Then, 
different values of P can be scanned around the initial 
one, each onecorresponding to optimal solutions with 
different A, and G but always with the maximum 
in 7. 

8. APPLICATION TO AN EXAMPLE 

In order to show how the method is used. an opti- 
mal solution will be obtained for the problem intro- 
duced in Table I. For illustration purposes, computa- 
tions will be carried out for P = 1.02 (i = 0.00038). 
corresponding to a logarithmic mean temperature 
difference of about 8.3 C. 

The definition of a modified temperature, 7. as 
given by equations (31) is useful so as to work with a 
single temperature variable for both exchanging 
streams. In the OLM, this new variable can be ob- 
tained by combining equations (31) and (45) to give 

P+I 
T= 2 t ( > 

for the CCS, and 

P+I 
T= 2p T ( > 

(6W 

(67b) 

for the HCS. 
Figure IO(a) is a schematic representation of pro- 

cess streams from which can be derived different tem- 
perature intervals where thermal integrstion must be 
carried out. Temperature intervals along the T-axis 
were calculated by means of equations (67) for 
P = 1.02. 

The point of intersection between the chosen opti- 
mal OL and the corresponding optimality region 
boundary can be obtained from equations (45) and 
(62b). Its coordinates are given by 

1,“, = $I-J(;)J (68a) 

and 

T,, = +&)) (68b) 

respectively. or in terms of f 

P+l 
Tin, = F l-,. ( > (684 
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FIG. IO. Schematic representation of process streams and pseudostreams. Calculations were performed for 
P = 1.02. 

In this example hi,, = 631.00 K. It is important to 
remark that the maximum stream temperature for this 
example is T = 567.38 K. Hence, the exchange region 
is completety inside the optimality region for the 
chosen P value. 

Stream splitting is to be performed inside each tem- 
perature interval in order to insure that the ratio cold- 
to-hot stream heat capacity flow rate satisfies equation 

055). 
The result is shown in Fig. 10(b), where ci, rep- 

resents the heat capacity flow rate of the cold pseudo- 
stream derived from the ith process stream in the jth 
temperature interval. These cold pseudostreams are 
to be matched against hot p~udostreams, hkj in the 
same interval, the designation of which has an 
interpretation analogous to that of cold pseudo- 
streams. For instance, in interval No. 3 the HCS heat 
capacity flow rate has a value such that PCV, > wj, 
for P = 1.02, U: = 0.95 MW K-’ and wj = 0.52 
MW I(-‘. In order to satisfy equation (65) the HCS 
must be split so that the heat capacity flow rate of the 
branch which is matched against the CCS is equal to 
W: = 0.51 MW K-‘. In terms of original streams, 
HS No. 2 is bifurcated in the same interval. One of 
its branches, represented by pseudostream hz3. is 
matched against CS No. 3, represented by pseudo- 
stream cj3. The other branch, represented by pseudo- 
stream h;, in Fig. IO(c), will remain as a process heat 
source to be coupled to a PGC. In the same interval, 
HS No. 4 is matched against CS No. 3. 

Due to the way it was constructed, each tem- 

perature interval in Fig. 10(b) is thermally balanced. 
Note that, according to the definition of i: given by 
equations (67), the absolute values of the differences 
between iniet and outlet temperatures of cold pseudo- 
streams in each interval are smaller than the cor- 
responding differences for hot pseudostreams. This 
explains the fact that each interval in Fig. IO(b) is 
energy self-sufficient although the total heat capacity 
flow rate of cold p~udostreams is larger than the 
corresponding one for hot pseudostreams. 

From the results displayed in Fig. IO(b), QE and AE 
values can be calculated in each interval and hence, 
the total value of Qr and AE for the entire system. 

Figure 10(c) shows the unmatched branches of spiit 
process streams. They are designated as in the case of 
hot and cold pseudostreams, except that now ‘primed’ 
letters are used to distinguish them from thermally 
integrated pseudostreams. They represent the process 
heat sinks and sources remaining after stream inte- 
gration has been performed according to the chosen 
optimal OL. 

When used as a targeting procedure the OLM con- 
siders the PGCs coupled to the HEN as ideal ones. 
From Fig. 10(c) the maximum power that can be 
generated by PGCs coupled to local process heat sinks 
and sources can be calculated. In interval No. 3, for 
instance, the unmatched branch of HS No. 2 (i.e. 
pseudostream h;,) is a local process heat source from 
which the maximum amount of work 7$ = 1.85 MW 
can be generated. 

Interval No. 2 shows an energy deficit. which 
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appears as a cold pseudostream in Fig. 10(c). This 
deficit can be met by direct heating by means of the 
hot utility, as was assumed in the formulation of the 
model. When searching for the optimal solution, this 
assumption was only a means to penalize the use 
of high quality energy for direct or indirect heating 
purposes over its use to generate shaft power in an 
SA-PGC of higher efficiency. 

When the optimal solution is implemented for a 
particular problem, this constraint is relaxed by using 
PGCs that discharge heat to every local process sink, 
producing an extra amount of shaft power fcs. This 
evolution neither changes the value of the objec- 
tive function nor modifies the optimal OL. so that 
the optimum reached remains unchanged. When 
this is done for interval No. 2. a contribution of 7;; = 

0.252 MW to the total amount of power generated is 
obtained. 

The energy performance of the optimal solution for 
P = I .02 is shown in Table 2 as solution C. 

When this procedure is repeated for several P values 
a set of optimal solutions (each one corresponding to 
different A, and G/AE values) can be obtained. The 
final choice of the most profitable solution among this 
set of energy optimal solutions can be made on the 
basis of additional economic arguments. that are 
beyond the scope of this paper. 

The optimal HEN for the chosen optimal solution 
can be derived with the of the lt,,/c,,-tableau and can 
be represented in the ‘grid’ form [I I]. For more details, 
the reader is referred to Paper II. 

9. CONCLUSIONS 

The physical and mathematical models on which 
the OLM are based have been presented together with 
a thorough discussion of the mathematical technique 
used to tackle the optimization problem. 

The results obtained through a rigorous math- 
ematical procedure are condensed in simple, well- 
established mathematical expressions that can be easily 
implemented to solve each particular optimal syn- 
thesis problem. The final, explicit relationships 
between operational and design parameters that char- 
acterize the optimum can be incorporated to the de- 
signer’s background enabling him to understand the 
‘physiology’ of the optimal solution and to anticipate 
the impact of technical decisions. 
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APPENDIX 

Operating on equation (34b). it results 

F,(f. T. 7’,) = @,,(T,) ; - 6 & 
1 

(Al) 

and 

F,,(l. 7’, I-,) = Q:,(T,) 
[. 

I 
; - _! + L ___ 

T c’(T--l) 1 643) 
which are the expressions of the derivatice appearing in 
equation (4Oa). obtained after the generalized function R has 
been substituted by its definition as given by equations (191. 

Since the solution sought belongs to the class represented 
by equations (4l), with piece-wise constant slope. equations 
(Al ) and (A2) become 

F,(r. T, P,,) = @,,(P,,) I - L - 
. I 

7+ u(r-f)? 1 (A3) 
and 

FT,(fr T, P,,) = bt: x sign (P,,) 

(A?) 

respectively. 
The total derivative in the second term of equation (40a) 

is 

$Fr(r.T.P,,) = bV,xM(P,,) 

x[l-e(~,lP,,I-w,+E)lX 1 (AS) 

where advantage has been taken of the fact that r, = P,, 
inside the (i.j) subregion, with P,, a constant value. 

Substituting equations (A3) and (A5) into equation (40a). 
and taking into account that 

sign (P,,)P,, = IP,,I 



Optimal synthesis of heat-and-power systems: the operating line method 2699 

SYNTHESE OPTIMALE DES SYSTEMES ENERGETIQUES: LA METHODE DE LA 
LIGNE OPERATOIRE 

R&d+-Les modeles physique et mathtmatique sur lesquels est construite la methode de la ligne operatoire 
(OLM) (H. A. Irazoqui. Chem. Engng Sci. 41, 1243-1255 (1986) ; P. A. Aguirre, E. 0. Pavani et H. A. 
Irazoqui, C/rem. Engng Sci. 44,803-E 16 (1989)). pour la synthise optimale des systemes energbtiques. sent 
disc&s en profondeur. Ces modeles incluent les “modes” d&change de chaleur de faqon a obtenir un 
schema optimal pour les systemes d’tnergie totale dans les “sines chimiques. On fait aussi un developpement 
de la technique mathematique utilis&e pour traiter le probltme d’optimisation. Ce developpement comprend 

la derivation des conditions necessaires et suffisantes de l’optimalite. 

OPTIMALE SYNTHESE VON WARME-KRAFT-SYSTEMEN: DAS VERFAHREN DER 
BETRIEBSKENNLINIEN 

Zusammenfassung-Die physikalisshen und mathematischen Modelle, auf denen das Verfahren der Bett-iebs- 
kennlinie (H. A. Irazoqui, C/rem. Engng Sci. 41, 1243-1255 (1986); P. A. Aguirre, E. 0. Pavani und H. 
A. Irazoqui, Chem. Engng Sci. 44,803-E 16 (1989)) fur eine optimale Synthese von Warme-Kraft-Systemen 
beruht, werden eingehend diskutiert. Diese Modelle enthalten die zugelassefien Formen von WHrme- 
tibertragung und die allgemeinen Besonderheiten der Losung, die gesucht wird urn eine optimale 
Anordnung des gesamten Energiesystems in chemischen Werksanlagen zu erlangen. Die erforderlichen 
mathematischen Verfahren zur Behandlung des Optimierungsproblems werden durchgehend entwickclt. 
Diese Entwicklung enthalt die Herleitung der notwendigen und hinreichenden Bedingungen fur einen 

optimalen Zustand. 

OITTHMAJIbHbIft CHHTE3 TElWIOBbIX W 3HEPTETWIECKMX CMCI’EM: METOA 
PAEOWiX KPMBbIX 

Amor~Tcn +mmemie n hfaTeuarwiecxsre uoxe_nH, na ocHone ro~opbtx pa3pa6oTan 
MCTOII pa6owsx ~JIISW (OLM) (H. A. lrazoqui, Chem. Engng Sci. 41.1243-1255 (1986); P. A. Aguirre, E. 
0. Pavani and H. A. Iraxoqui, Gem. Engng Sci. 44.803-816 (1989)) MR ourwank.Horo c-a Teuno- 
Bhoc E 3HepreTwtecKlix csicrehi. 3nl M0Jwlsl BunosaioT JIonycrHMble pexEMu rrnnooheea B o6ume 
xaparrep5r~ wua nc~oMor0 pewetmn pnn pa3pa6o~ui 0m~~anbxoiI cxehw seeprk3wecurx 
csicreM a xEhmw!c~~~ npon%o~c~nax. Paspa6oTaHbl MaTeMaTwxecxxe M~TOAU peluewfn wwtH, oape- 

nenetlsl Heo6xoawbre u wzraTorMble ycnoew otmrhwaxwi. 


